The Distribution of Polar Ejection Forces Determines the Amplitude of Chromosome Directional Instability

نویسندگان

  • Kevin Ke
  • Jun Cheng
  • Alan J. Hunt
چکیده

BACKGROUND Polar ejection forces have often been hypothesized to guide directional instability of mitotic chromosomes, but a direct link has never been established. This has led, in part, to the resurgence of alternative theories. By taking advantage of extremely precise femtosecond pulsed laser microsurgery, we abruptly alter the magnitude of polar ejection forces by severing vertebrate chromosome arms. RESULTS Reduction of polar ejection forces increases the amplitude of directional instability without altering other characteristics, thus establishing a direct link between polar ejection forces and the direction of chromosome movements. We find that polar ejection forces limit the range of chromosome oscillations by increasing the probability that motors at a leading kinetochore abruptly disengage or turn off, leading to a direction reversal. CONCLUSIONS From the relation between the change in oscillation amplitude and the amount a chromosome arm is shortened, we are able to map the distribution of polar ejection forces across the spindle, which is surprisingly different from previously assumed distributions. These results allow us to differentiate between the mechanisms proposed to underlie the directional instability of chromosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle

We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening...

متن کامل

Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression.

We have proposed previously a kinetochore motor-polar ejection model for chromosome congression to the metaphase plate where forces generated at the kinetochore are antagonized by away-from-the pole forces generated within each half-spindle on the chromosome arms. This model was based in large part on observations of the behavior of chromosomes on monopolar spindles. In these cells chromosomes ...

متن کامل

Dynamic bonds and polar ejection force distribution explain kinetochore oscillations in PtK1 cells

Duplicated mitotic chromosomes aligned at the metaphase plate maintain dynamic attachments to spindle microtubules via their kinetochores, and multiple motor and nonmotor proteins cooperate to regulate their behavior. Depending on the system, sister chromatids may display either of two distinct behaviors, namely (1) the presence or (2) the absence of oscillations about the metaphase plate. Sign...

متن کامل

Investigation of Dust-Ion Acoustic Waves in a Magnetized Collisional Dusty Plasma with Kappa Distribution Function for Electrons

The propagation of arbitrary amplitude dust ion acoustic waves (DIAWs) in a magnetized collisional dusty plasma including hot electrons, with kappa velocity distribution for electrons, warm ions and dust particles has been studied. In the presence of immobile massive dust particulates, DIAWs have been investigated through the Sagdeev pseudo-potential method. It is demonstrated that the amplitud...

متن کامل

The microtubule-binding and coiled-coil domains of Kid are required to turn off the polar ejection force at anaphase.

Mitotic chromosomes move dynamically along the spindle microtubules using the forces generated by motor proteins such as chromokinesin Kid (also known as KIF22). Kid generates a polar ejection force and contributes to alignment of the chromosome arms during prometaphase and metaphase, whereas during anaphase, Kid contributes to chromosome compaction. How Kid is regulated and how this regulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2009